
Generating Playable Mario Levels with GANs

Holden Schermer

May 2025

1 Abstract

Creating game levels remains a difficult challenge, particularly when trying to ensure they’re
both fun to play and actually completable. My project investigates using GANs to generate
platformer game levels by using data from the Mario AI Framework. I trained a generative
adversarial networks (GAN) to capture design patterns from classic Mario games and create
new level segments. To make sure my generated levels completable, I built in playability
testing using both rule-based checks and an AI agent that attempts to complete each indi-
vidual level. I aimed to show that AI can create diverse, enjoyable platformer levels that
meet basic gameplay requirements and capture the essence of human-designed levels.

2 Introduction

Game developers have long explored ways to automate level design, particularly through
procedural content generation. Platform games are especially challenging due to their need
for careful pacing, obstacle placement, and fairness qualities that require time and expertise
to craft by hand. Traditional rule-based generators can produce functional layouts, but
often lack the creativity and nuance of human-made levels.

Recent advances in machine learning provide a new direction. Instead of relying on hand-
coded rules, models like generative adversarial networks (GANs) can learn directly from
example levels, capturing the patterns that make them playable and engaging. In this
project, I explored whether GANs could be used to generate Super Mario-style levels that
not only resemble authentic platformer stages but also offer coherent gameplay experiences.

To ensure generated levels were both diverse and playable, I incorporated conditional genera-
tion, structural constraints, and post-processing heuristics. The goal was to balance creative
freedom with the functional requirements of a platformer levels that are visually convincing,
structurally sound, and offer fair challenges. Ultimately, this work aims to demonstrate how
AI can assist in automating game design without sacrificing quality or playability.

1



2.1 Literature Review

Traditional procedural content generation (PCG) systems largely depended on manually
designed algorithms that combine predefined tiles into levels [1]. While these approaches
consistently produce playable levels, they rarely generate truly novel designs because their
output space is limited to combinations the designer explicitly anticipated. Machine learn-
ing approaches, especially generative adversarial networks (GANs), offer a more expansive
design space by learning level structure directly from examples, allowing them to create
patterns beyond those specifically seen during training.

In their work on 2D platformers, Rodŕıguez Torrado and colleagues developed the Con-
ditional Embedding Self-Attention GAN (CESAGAN), demonstrating that self-attention
mechanisms help generators maintain long-range spatial relationships like keeping pipes
vertically aligned throughout a level [2]. CESAGAN featured a bootstrapping process
where generated levels passing playability tests were reincorporated into training data—an
approach that directly influenced my use of playtesting filters. Similarly, Rajabi’s team
integrated deep convolutional GANs with reinforcement learning agents that tested each
generated level, filtering out unbeatable designs and moving generation toward balanced
difficulty [3]. Both studies show how GANs can implicitly learn level design principles while
remaining flexible enough to adapt to high-level goals like variety or challenge level.

Training instability and mode collapse remain persistent problems in GAN research. Silva
and colleagues reviewed hybrid approaches that combine GANs with rule-based post-processing
to enforce constraints when generators produce unrealistic outputs [4]. I adopted this hybrid
philosophy through my structural loss components and sky-cleaning heuristics, which act
as guardrails layered onto the adversarial training objective. Lack of data presents another
challenge. The classic Mario games contain relatively few original levels. Mao’s research
shows that basic data augmentation techniques like horizontal flipping and subtle reposi-
tioning create sufficient variety for stable GAN training without introducing fake artifacts
[5]. My preprocessing pipeline implements similar augmentation strategies.

While playability forms a necessary foundation, it doesn’t guarantee engaging gameplay.
Levels can be technically completable yet boring. Shaker, Yannakakis, and Togelius pi-
oneered experience-driven PCG approaches that incorporated player behavior data into
generation systems, allowing them to customize difficulty curves to individual player skills
[6]. Though real-time personalization exceeds my current scope, their findings show why
my generator must produce diverse level distributions. Providing raw material that future
personalization systems could filter or resequence according to player needs.

Other generative models present tradeoffs for level design. Transformers excel with se-
quential data but struggle with the global coherence needed for two-dimensional layouts.
Variational autoencoders often produce visually soft outputs that don’t translate well to
discrete tile sets. GANs, however, directly optimize for realistic outputs through adversarial
training, creating categorical results that map back to level tiles. Furthermore, conditional
GANs provide explicit control mechanisms (like difficulty parameters) while leveraging con-
volutional architectures that capture spatial patterns effectively closing the gap between
data-driven generation and designer-controlled constraints. For these reasons, GANs offer
the optimal balance of expressiveness, controllability, and output quality for my goal of
generating playable, varied Mario-style platformer levels.

2



3 Methods

The central objective of this study was to explore the capability of generative adversarial
networks (GANs) to automatically produce Super Mario Bros-style game levels that are both
playable and stylistically coherent with original human-designed levels. The methodology
involved four primary stages: data preprocessing, neural network architecture design, adver-
sarial training with a custom structural loss, and thorough evaluation with post-processing
steps. All code referenced throughout this section was independently developed and is
detailed explicitly in the accompanying Jupyter notebook.

3.1 Data Preprocessing

The initial data preprocessing phase required transforming raw Super Mario Bros level data
from ASCII-encoded text into numeric tensors appropriate for neural network training.
Original game levels from the Mario AI Framework were represented in ASCII format,
with each character corresponding uniquely to specific tiles such as enemies, ground blocks,
platforms, or empty space. The critical preprocessing step, shown in the first cell, mapped
each ASCII character to a unique integer identifier. This numeric mapping was essential to
ensure compatibility with PyTorch’s tensor-based computations.

Subsequently, levels were segmented into standardized chunks of 16× 16 tiles. This specific
chunk size closely mirrors the dimensions of a typical Mario gameplay screen, thus allowing
generated levels to realistically reflect actual gameplay scenarios. By segmenting levels into
smaller, uniform chunks, the complexity of training data was reduced while at the same time
increasing the amount of training data avaliable. This enhanced computational efficiency
and enabling more effective model training. Implementation details for this step can be
found in cell 2 of the Jupyter notebook.

To ensure basic structural integrity and playability, I implemented a filtering function
clean chunk, which excluded chunks lacking sufficient ground tiles. This filtering was
crucial, as ground tiles form the basis of fundamental gameplay mechanics like character
movement and platform interaction. Including structurally incomplete chunks in training
data would have negatively impacted the GAN’s ability to generate functional levels.

A custom PyTorch dataset class, MarioDataset, was also created to streamline loading,
batching, and shuffling data during training. This class leveraged PyTorch’s DataLoader
functionalities, increasing efficiency and ensuring optimal data presentation during the
GAN’s training phases.

3.2 GAN Architecture

The GAN architecture was composed of two convolutional neural networks specifically tai-
lored for the task of level generation. The generator network, detailed in notebook cell
3, consisted of convolutional transpose layers complemented by batch normalization and
Leaky ReLU activations. This design choice effectively captured and reproduced spatial
dependencies inherent to platform game designs.

Similarly, the discriminator network (specified in cell 4) distinguished authentic Mario level
chunks from those generated artificially. Its architecture included convolutional layers with

3

https://github.com/HoldenSch/Neuro140-Final-Project/


Leaky ReLU activations, culminating in a sigmoid activation for binary classification. Bal-
ancing complexity between the generator and discriminator networks ensured stable adver-
sarial training and prevented common GAN issues such as mode collapse.

3.3 Adversarial Training with Custom Structural Loss

Training followed the standard GAN paradigm using adversarial optimization. During each
epoch, the generator G and discriminator D were updated alternately: D minimized binary
cross-entropy to distinguish real from fake level patches, while G aimed to maximize D’s
error, effectively generating levels that appeared real to the discriminator.

Optimization was performed using the Adam optimizer with a learning rate of 1e−4 and
(β1 = 0.5, β2 = 0.999) for both G and D. These values are standard for stabilizing GAN
training and reducing mode collapse and worked effectively to generate levels. The lower β1

encourages the optimizer to adapt faster to gradient changes, which is particularly useful in
the adversarial setting.

Critically, generator training also incorporated a custom structural loss to encourage game-
play coherence. The structural loss Lstruct included three components:

• ground excess: penalized over or underuse of ground tiles, ensuring reasonable terrain
coverage;

• stretch pen: discouraged large flat sections or overly frequent gaps, balancing level
pacing;

• sky solid pen: penalized solid blocks in the upper sky region, which typically should
remain free or sparse.

Each component contributed to the total loss as a weighted sum:

Ltotal = Ladv + λground · ground excess+ λstretch · stretch pen+ λsky · sky solid pen

Empirical tuning showed the best trade-off between level variety and structure at λground =
1.0, λstretch = 1.0, and λsky = 1.5. The slightly higher weight on the sky penalty reflects
the need to more strongly discourage unnatural block placement in visually sensitive areas
of the level which was a prominent issue when initially generating levels. These structural
penalties helped enforce global coherence and maintain a playable, human-like feel across
the generated levels.

3.4 Post-processing and Level Generation

Post-processing played a crucial role in refining generated levels. Functions such as carve random pits

and prune sky were introduced to further enhance playability. carve random pits in-
serted randomized gaps according to preset difficulty parameters, thus controlling the chal-
lenge level. prune sky removed inappropriate tiles from upper rows based on probabilis-
tic gradient, ensuring that sky regions were not unrealistically obstructed. Additionally,
generate multiple levels systematically produced multiple levels across different diffi-
culty settings (easy, medium, hard) for easy testing. Implementation details are detailed in
notebook cell 7.

4



3.5 Evaluation and Metrics

Evaluation combined both quantitative and qualitative metrics to assess generated levels.
Quantitatively, I calculated tile entropy, linearity, and leniency. Tile entropy measured
creative diversity over tile frequency distributions. Linearity captured terrain variation by
computing the standard deviation of ground heights across columns. Leniency quantified
gameplay difficulty by combining enemy density with the number and average width of
pits. These metrics were computed across 30 sampled levels and visualized to analyze the
expressive range of the generator’s output.

Qualitative visual analyses using heatmaps and expressive range scatter plots provided in-
tuitive evaluations of the generated levels’ structural and stylistic coherence. Additionally,

the final stage of evaluation involved generating a comprehensive set of 90 levels—30 each
for easy, medium, and hard difficulty settings. These levels were tested for playability using
the robinBaumgarten agent from the Mario AI Framework. Although I did not develop this
agent myself, I selected it specifically for its recognized effectiveness in accurately assessing
the practical playability of generated levels, providing an external and objective validation
of the GAN’s outputs.

4 Results

4.1 Quantitative Results

Figure 1: Loss curves for generator, discriminator, and structural losses over 30 epochs.

Figure 1 shows the training losses for both the adversarial and structural components over
30 epochs. The generator loss (Ladv) steadily decreased and plateaued around epoch 20,
while the discriminator maintained a relatively stable loss throughout, indicating that nei-
ther network collapsed during training. This suggests a healthy adversarial balance, where
the generator was learning to produce plausible levels without overpowering or being over-
powered by the discriminator.

The structure loss, which enforces gameplay coherence through penalties on terrain and
layout irregularities, decreased sharply during the first half of training and began to plateau

5



around epoch 20. The early and consistent decline in structure loss suggests that the gen-
erator quickly learned to follow these constraints, producing levels with reasonable terrain,
varied pacing, and realistic spatial structure. Given that both structure and adversarial
losses stabilized by epoch 30, I used this as my stopping point to avoid overfitting and
reduce unnecessary computation.

Figure 2: Tile distribution heatmap across generated levels.

Figure 2 provides insight into how the GAN distributed different tile types across generated
levels and how diverse each level was in terms of tile usage. In the top plot, the boxplots show
the percentage of each tile type across 30 levels. Ground blocks (’X’) were the most dominant
tile—aside from sky blocks (’-’), which were excluded for readability—typically accounting
for 6–12% of a level’s composition. This aligns well with original Super Mario Bros levels,
where ground tiles form the structural foundation of platformer gameplay. Invisible 1-Up
blocks (’1’) and jump-through platforms (’%’) were the next most common, both of which
are also staples in real level designs.

The bottom plot shows the distribution of tile entropy across generated levels. This is a
measure of how many distinct tile types appeared and how evenly they were used. Most
levels fell between 0.85 and 1.10 in entropy, indicating that while levels were not uniformly
random, they exhibited a sufficient degree of creative diversity. This balance mirrors the
structure of real Mario levels used during training, which also blend core terrain elements
with occasional special blocks and enemies. Overall, these results demonstrate that the

6



generator not only learned to prioritize foundational game tiles but also introduced enough
stylistic variation to keep levels from feeling repetitive or empty.

Figure 3: Expressive range scatter plot showing linearity vs. leniency.

The expressive range plot (Figure 3) further supports the diversity of generated levels using
two key gameplay metrics: linearity and leniency. Linearity measures the standard deviation
of ground height across the level, serving as a metric for terrain variation. Low values
imply flat terrain, while higher values indicate more vertical complexity. Leniency estimates
difficulty based on a combination of enemy density and the number and size of pits, with
lower values corresponding to easier levels.

The scatterplot shows a wide spread of levels across both axes, demonstrating that the gen-
erator produced levels with varied terrain structures and gameplay difficulty. Levels with
low leniency and high linearity represent harder, more erratic layouts, while levels clustered
toward the bottom-left are flatter and easier. The color gradient encodes normalized tile
entropy, with brighter points indicating more diverse tile use. Notably, high-entropy levels
are scattered throughout the plot, suggesting that stylistic variety does not necessarily cor-
relate with difficulty. Some easy levels are just as visually diverse as harder ones. Together,
this indicates the GAN learned to produce structurally distinct levels without collapsing.

7



4.2 Playability Testing

Playability—defined as the ability to complete a level from start to finish—was evaluated
using the robinBaumgarten agent from the Mario AI Framework, a well-established bench-
mark in procedural content generation research. Out of 90 generated levels (30 from each
difficulty tier), the agent successfully completed 81, yielding a 90% completion rate. This
is a critical, if not the most important, metric in assessing the viability of level genera-
tion systems. Regardless of visual diversity or structural coherence, a level that cannot be
completed fails as a playable experience.

Importantly, this 90% benchmark likely underestimates true playability. The robinBaum-
garten agent, while effective, relies on heuristic planning and is known to occasionally fail
on levels that a human player would easily complete. This is known to happen in cases with
unconventional layouts, minor timing requirements, or sparse cues. As such, the true com-
pletability of the generated levels is almost certainly higher. Still, achieving such a strong
result from a generator demonstrates that the GAN not only produced visually coherent
layouts but also learned fundamental platformer mechanics like traversability, jump timing,
and the placement of reachable objectives.

4.3 Qualitative Analysis

The qualitative results, shown in the tile heatmaps (Figure 4), help contextualize the quan-
titative diversity and structure metrics. The top heatmap shows where non-empty tiles
(anything other than air) tend to appear across the generated levels. As expected, the
bottom rows are densely populated, reflecting solid ground placement typical of 2D plat-
former design. The middle and upper areas are comparatively sparse, with occasional block,
platform, or enemy placements, indicating a basic grasp of vertical structuring but limited
variation in higher elevations.

The ground tile heatmap reinforces this pattern. Most ground tiles cluster along the bottom
two rows, forming a mostly continuous base, although occasional breaks show the inclusion
pits. While this confirms that levels are playable from a terrain perspective, the shapes and
slopes remain somewhat rigid. There’s little evidence of the kind of organic hills, ramps, or
multi-level structures seen in human-designed Mario levels, implying the generator favors
simple, flat terrain with minimal elevation changes.

The enemy heatmap shows sparse and widely distributed enemy placement across the gen-
erated levels. This aligns with Super Mario Bro level design, where enemies are introduced
gradually and appear intermittently rather than in large clusters. While this sparse place-
ment makes the levels more approachable and helps satisfy leniency-based diversity metrics,
it also reveals a limitation in intentional design. The generator includes enemies, but their
locations seem to feel random rather than purposeful. There is little evidence of coordinated
enemy setups—such as guarding pits, patrolling platforms, or increasing in frequency over
time—which are common in human-designed levels to shape difficulty and pacing. So while
the GAN avoids overpopulation of enemies, it still struggles to generate encounters that feel
strategically placed.

Looking through the raw level outputs confirms this impression. While the levels are un-
doubtedly playable and visually varied, they often lack the design coherence and purposeful
layout of human-made content. Platforms float without clear purpose, enemy density feels

8



Figure 4: Tile usage heatmaps differentiated by difficulty (easy, medium, hard).

randomized and spatial rhythm, which helps pace in platformers, is somewhat missing.
These results point to a core limitation of GAN-based generation, as well as of the current
implementation: while quantitative metrics suggest structural success, achieving human-like
level design likely requires more nuanced architectural control, refined training strategies,
or post-processing techniques beyond what was achieved in this project.

5 Discussion and Reflection

The overall results reveal that it’s possible to generate playable Super Mario Bros-style levels
using a GAN, especially when combined with structural losses that push the generator
toward coherent outputs. The levels weren’t just technically functional; they varied in
terrain, enemy use, and tile composition, and covered a fairly wide range of difficulty levels.
A 90% completion rate by the robinBaumgarten agent supports the idea that most of these
levels were playable and respected core gameplay rules.

At the same time, the levels didn’t always feel human-designed. While enemies, blocks,
and platforms appeared in reasonable places, the arrangement often felt arbitrary. Some
sections contained floating blocks with no clear purpose, or enemies placed in isolation.

9



Other times, chunks with vastly different structures were stitched together, which made the
level feel less coherent overall. So while the generator met the structural checklist—ground
coverage, some variation, not too many enemies—it often missed the subtler design qualities
like pacing, challenge escalation, or surprise. These are harder to quantify but are key to
making levels feel engaging and intentional.

5.1 Challenges and Next Steps

A key challenge in this project was the limited variety in the original Mario dataset. With
only a small number of human-designed levels to learn from, the generator had a narrow view
of what makes a level engaging or well-paced. This likely contributed to repetitive patterns
and a lack of higher-level structure in some outputs. Another challenge was getting levels
to feel coherent. While structural losses helped with local constraints—like ground coverage
and avoiding block spam in the sky—the overall layout often lacked flow. Sections were
sometimes stitched together awkwardly, and enemies or platforms appeared without a clear
purpose. These issues reflect both the limits of GANs and the difficulty of capturing human
design intent using only low-level constraints.

Another large limitation was the inability to integrate agent-based feedback into the training
process. Due to constraints with the Harvard-provided Jupyter GPU platform, I wasn’t able
to run the Mario AI Framework during training, which meant the AI agent could only be used
for post-generation evaluation. As a result, the model had no direct signal from gameplay
outcomes during learning. In future work, reinforcement learning could be combined with
GAN generation, allowing an agent to influence the training process by rewarding levels
that are not only playable but strategically interesting or challenging. This could help the
model learn beyond surface-level patterns and adapt based on how a level actually plays.

To make the levels feel more realistic and thoughtfully designed, future work could also
expand the training data. Adding more diverse or procedurally tweaked levels would give
the model more patterns and ideas to learn from. It might also help to try a more advanced
model, like a transformer, which could better handle long-range structure and make levels
feel more cohesive. Another approach is to let designers guide the process by giving the
model goals like “easy,” “lots of pits,” or “more enemies.” Lastly, even further simple rule-
based cleanup steps after generation—like fixing awkward transitions or moving enemies
into better spots—could make the levels feel less random and more polished without taking
away the creativity of the GAN.

6 Reflection

This project was definitely one of the most challenging but rewarding things I’ve worked on.
I’m not the strongest coder, so getting everything to work, from the GAN architecture to the
evaluation and visualization, took a lot of trial and error, and more time than I expected.
But working with a game I grew up playing made the process feel meaningful and fun, even
when things were frustrating. I’m proud of how much effort and time I put in and that I
was able to build something that actually works, even if it’s far from perfect. It feels good
to have pushed through the hard parts and come out with a result I can be proud of.

10



References

[1] G. Smith, J. Whitehead, and M. Mateas. Tanagra: A Mixed-Initiative Level Design Tool.
In Proceedings of the Fifth International Conference on the Foundations of Digital Games
(FDG), pages 209–216, 2010. https://dl.acm.org/doi/10.1145/1822348.1822376

[2] R. R. Torrado, A. Khalifa, M. C. Green, N. Justesen, S. Risi, and J. Togelius. Bootstrap-
ping Conditional GANs for Video Game Level Generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2019. https://arxiv.org/abs/1910.01603

[3] M. Rajabi, M. Ashtiani, B. Minaei-Bidgoli, and O. Davoodi. A Dynamic Balanced Level
Generator for Video Games Based on Deep Convolutional GANs. Scientia Iranica,
28(3):1497–1514, 2021. https://scientiairanica.sharif.edu/article_22082.html

[4] D. F. Silva, R. P. Torchelsen, and M. S. Aguiar. Procedural Game Level Generation
with GANs: Potential, Weaknesses, and Unresolved Challenges. Multimedia Tools
and Applications, 2025. https://www.researchgate.net/publication/388162276_

Procedural_game_level_generation_with_GANs_potential_weaknesses_and_

unresolved_challenges_in_the_literature

[5] X. Mao, W. Yu, K. D. Yamada, and M. R. Zielewski. Procedural Content Generation
via Generative Artificial Intelligence. arXiv preprint arXiv:2407.09013, 2024. https:

//arxiv.org/abs/2407.09013

[6] N. Shaker, G. N. Yannakakis, and J. Togelius. Towards Automatic Personalized Content
Generation for Platform Games. In Proceedings of the Sixth AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment (AIIDE), pages 63–68, 2010.
https://ojs.aaai.org/index.php/AIIDE/article/view/12399

11

https://dl.acm.org/doi/10.1145/1822348.1822376
https://arxiv.org/abs/1910.01603
https://scientiairanica.sharif.edu/article_22082.html
https://www.researchgate.net/publication/388162276_Procedural_game_level_generation_with_GANs_potential_weaknesses_and_unresolved_challenges_in_the_literature
https://www.researchgate.net/publication/388162276_Procedural_game_level_generation_with_GANs_potential_weaknesses_and_unresolved_challenges_in_the_literature
https://www.researchgate.net/publication/388162276_Procedural_game_level_generation_with_GANs_potential_weaknesses_and_unresolved_challenges_in_the_literature
https://arxiv.org/abs/2407.09013
https://arxiv.org/abs/2407.09013
https://ojs.aaai.org/index.php/AIIDE/article/view/12399

	Abstract
	Introduction
	Literature Review

	Methods
	Data Preprocessing
	GAN Architecture
	Adversarial Training with Custom Structural Loss
	Post-processing and Level Generation
	Evaluation and Metrics

	Results
	Quantitative Results
	Playability Testing
	Qualitative Analysis

	Discussion and Reflection
	Challenges and Next Steps

	Reflection

